
FCN-Based 6D Robotic Grasping for Arbitrary Placed Objects

Hitoshi Kusano1, Ayaka Kume2, Eiichi Matsumoto2 and Jethro Tan2

Abstract— We propose a supervised end-to-end learning
method that leverages on our grasp configuration network to
predict 6 dimensional grasp configurations. Furthermore, we
demonstrate a novel way of data collection using a generic
teaching tool to obtain high-dimensional annotations for objects
in 3D space. We have demonstrated more than 10,000 grasps for
7 types of objects and through our experiments, we show that
our method is able to grasp these objects and propose a larger
variety of configurations than other state-of-the-art methods.

I. INTRODUCTION

The goal in robotic grasping is to derive a series of
configurations of a robot and its end-effector when given
data acquired from some sensors in such a way that its end-
effector ‘grasps’ a user-defined target. Being able to grasp
arbitrary placed objects would not only enable automation
of tasks found in factories and logistics, but also progress
the development towards a general purpose service robot.
Traditional approaches to grasp an object often rely on object
pose estimation [1], [2] or pattern recognition techniques to
detect object-specific features in point cloud data [3], [4].

However, such approaches are ill-suited for use in objects
placed in unstructured environments, or for use with complex
end-effectors with high degrees-of-freedom (DOF), because
they provide information about the state of the object, but not
the state in which the robot or its end-effector should be in
order to grasp the object. Therefore, these approaches make
use of heuristics to select a configuration (i.e. joint angles,
position, orientation, etc.) for the robot and its end-effector.
Furthermore, detection of object-specific features may fail
or provide false positives on either deformable objects or
objects unknown to the system.

The recent advances and popularity of deep learning have
given birth to new methods for grasping that are able to
directly generate the configurations of the robot as well as
its end-effector. The idea of these new methods is to evaluate
the success rate in the configuration space of the end-effector
and select the configuration with the highest score.

A. Problem Statement

These new methods, however, have a disadvantage when
applied on higher DOF end-effectors or when there is need
for increasingly complex grasp strategies as it becomes more
and more difficult or even impossible to annotate the data.
Therefore, such methods rely on low dimensional annotations
making them unable to output 6D grasp configurations. In

This work was supported by Preferred Networks, Inc.
1Kyoto University, Kyoto 606-8501, Japan,

kusano@ml.ist.i.kyoto-u.ac.jp
2Preferred Networks Inc., Tokyo 100-0004, Japan, {kume,

matsumoto, jettan}@preferred.jp

this work, we therefore pose the following question: How to
enable end-to-end learning to grasp arbitrary placed objects
using high dimensional annotations?

B. Contribution

While current state-of-the-art CNN-based grasping meth-
ods rely on annotation on images, to the best of our knowl-
edge there has been no work that utilizes annotations in
3D space for grasping. Therefore, our contributions are as
follows:

Contribution 1: A supervised learning method using an
end-to-end convolutional neural networks (CNN) model that
we call the grasp configuration network (GCN), capable of
predicting 6D grasp configurations for a three-finger gripper
as well as probability of the configurations to successfully
grasp a target object.

Contribution 2: A novel data collection strategy to obtain
6D grasp configurations to use in the training of GCN using
a generic teach tool.

The remainder of this paper is organized as follows.
Related work is described in Section II, while Section III
outlines the GCN. Experimental results using GCN and eval-
uation are presented in Section IV. Future work is discussed
in Section V, while the paper is concluded in Section VI.

II. RELATED WORK

A. Traditional Methods

Methods not using machine learning include CAD model
matching [5] or template matching. As these methods
require careful feature engineering and parameter tuning,
data-driven methods have been actively studied to overcome
these disadvantages. For surveys on data-driven approaches
for grasp synthesis, we refer the reader to Bohg et al. [6] and
to Li et al. [7] for a method based on object pose estimation.

B. Machine Learning Methods

In the past few years, CNN have become the state-of-the-
art for performing general object recognition tasks [8]. In our
method, we leverage a fully convolutional network (FCN),
which is a type of CNN meant for semantic segmentation [9],
[10]. FCN has shown to be compatible with RGB-D input
images, which can be exploited for to predict pickability [9].
Nguyen et al. [11] uses a CNN model to predict affordances
for an object. Unlike our method, however, their CNN
model does not predict configurations for the grasp itself.
In [12], Lenz et al. deploy a deep neural network model
with two stages to propose and score grasp configurations.
Similarly, Araki et al. [13] proposed the use of a single-stage
model which was able to simultaneously predict the grasp



(a) System setup

(b) Teach tool

Fig. 1. System setup used for data collection and testing: (a) (from left to
right) (i) mount with Intel Realsense SR300 RGB-D camera, (ii) abritrary
placed object, (iii) THK TRX-S 3-finger gripper on a (iv) FANUC M-10iA
6 DOF industrial robot arm and (b) Teach tool to demonstrate grasp and
record its 6D gripper configuration. Grasp position marked with white ’X’.

probability and the configuration of the end-effector. Guo et
al. [14] make use of a model inspired by Faster R-CNN [15]
and were able to output 4 DOF grasp candidates at multiple
locations in the image with a single forward computation of
the neural network.

Pinto et al. [16] and Levine et al. [17] have proposed
self-supervising methods by automating the data collection
process. An alternative approach to collect data for grasping
is from learning by demonstration. Gupta et al. [18] have
trained a multi-fingered hand to manipulate by demonstrating
the desired manipulation motions for objects with their own
hands. The robot then tries to imitate these demonstrations
using reinforcement learning.

III. THE GRASP CONFIGURATION NETWORK

A. Data Collection

We propose a method for manually annotated data col-
lection. As teach tool, we created a gripper with three
augmented reality (AR) markers, see Figure 1. This teach
tool allows us to demonstrate grasps by capturing a 400×400
image from our RGB-D camera, after which the RGB and
depth channels are registered and resized to 200 × 200
for training and inference of GCN. Although the shape of
the gripper used in our system is not represented by our
teach tool, the teach tool allows capturing of 6-dimensional
configurations, containing the position (XYZ), as well as
orientation (RPY) in the camera coordinate system, which
can in turn be used as grasp configurations. When multiple
configurations in one location are demonstrated for an object,
all of them are utilized to train GCN.

Because we want to record the actual position of the
demonstrated grasp instead of the AR markers, the offset

between the AR markers and the center between the pinch
tips are added to determine the true position of the demon-
strated grasp. Additionally, to increase the accuracy of the
observed rotation, two orthogonal vectors of the gripper (in
the longitudinal and lateral direction) are used to calculate
the rotation.

B. Model Overview

To predict end-effector configurations for grasping an
object, we introduce an extension for fully convolutional
networks (FCN) that we call the grasp configuration network
(GCN), as shown in Figure 2. As input, we provide an RGB-
D image obtained from an Intel Realsense SR300 camera
to our model, which in turn outputs two maps with scores:
(1) a predicted location map (PLM) for graspability per pixel,
and (2) a predicted configuration map (PCM) providing end-
effector configurations per pixel.

C. Data Discretization

Despite the multimodal nature of grasping, prior works
have tried to use regression to model grasp configura-
tions [14]. However, since the optimal value in a regression
model is calculated by minimizing a mean of distances
between outputted and training data, an assumption is needed
that a configuration between multiple grasp configurations
must also be valid.

If we let g1 and g2 be valid grasp configurations for a target
object o in location (x, y), we argue that the mean of g1 and
g2 might neither be an optimal nor valid grasp. We therefore
discretize grasp configurations and use a classification model
instead, as proposed in [21]. A naive solution to achieve
discretization is to take all possible combination of quantized
configurations along each degree of freedom. However, the
amount of combinations would increase exponentially as
the dimension of a configuration increases. To alleviate this
problem, we categorize valid grasp configurations to 300
classes using k-means clustering.

D. Training

1) Pre-training: Similar to FCN, first initialize the
weights in the first layer corresponding to RGB of the
convolution network using VGG-16 pre-trained on ILSVRC
dataset [8] followed by fine-tuning on the NYUDv2 pixel-
classification task [22]. We then use these weights as initial
weights of GCN.

2) Settings: To train GCN, we employ Adam as optimizer
with learning rate α = 0.0004 and batch size of 80. To
further reduce overfitting during training, we perform data
augmentation by applying label-preserving transformations.

Because of the imbalance ratio between positive and
negative data (less than 1 : 10000), we define LPLM, the loss
function for PLM to magnify the gradient for valid grasp
as follows. tywhere a denotes the magnification ratio, n the
number of training data, W,H the width and the height of
the image, t the target PLM, and y the output. We use a
value of 200 for magnification ratio a.

For PCM, we calculate the loss for only valid locations.
We define LPCM as follows.



RGB
200×200×3

Depth
200×200×1

Input
200×200×4

16

S1

32

S2 S1

64
64

S2 S1

64 64

S2

64

S2 S1

64
64

S2 S1

32

16

S2 S1

S2

302

PCM
200×200×301

PLM
200×200×1

Output
200×200×302

Fig. 2. Network architecture of the grasp configuration network (GCN). The stride of each layer is denoted with S1 (stride 1) or S2 (stride 2). S1
layers use a kernel size of 3 × 3, and 4 × 4 for S2 layers. All layers have their padding set to 1. After each layer except for the last layer we apply
batch-normalization [19] and use rectified linear units [20] as activation functions. For the last layer, we apply sigmoid function. For training, GCN receives
a 64×64 RGB-D image, and a 200×200 RGB-D image as input for inference. Outputs are a predicted location map (PLM) and a predicted configuration
map (PCM).

(a) Known objects

(b) Unknown objects

Fig. 3. Objects used in our experiments (from): (A) laundry detergent,
(B) plush bear, (C) energy drink, (D) white board eraser, (E) vacuum hose
piece, (F) sprinkler, (G) wool, (H) cap, (I) glucose bottle, (J) duct tape, (K)
bottle of tea, and (L) sippy cup. Items (A)–(G) were used in the training
process, while (H)–(L) were left as ‘unknown’ objects for experiments.

LPCM = − 1

nC

n∑
k=1

1

Sk

C∑
c=1

W,H∑
i=1,j=1

(t
(i,j)
k (Cu

(i,j,c)
k log y

(i,j,c)
k

+ (1− u
(i,j,c)
k ) log (1− y

(i,j,c)
k ))),

where C denotes the number of classes, Sk the total number
of pixels at which t

(i,j)
k = 1, u the target PCM, and y the

output. We use L = LPLM + λLPCM as full objective and we
set λ = 200.

IV. EXPERIMENT RESULTS

A. Setup

To evaluate the performance of GCN on grasping, we have
conducted experiments on 12 objects with different rigidness
and shapes, see Figure 3. Experiments were done in an office

Fig. 4. Example of top scoring grasp configurations on items (H), (I),
and (L) in PCM for the top scoring location in PLM. The best scoring
configuration is colored red, while yellow and blue shows the second and
third best scoring configurations, respectively.

environment using the same setup shown in Figure 1. In this
environment, the camera provides a view on a 70 × 50 cm
plane in which objects can be placed by us and grasped by
the robot. The camera itself is mounted 75 cm above this
plane.

Data collection was performed for only objects (A)–(G).
For each of these seven objects, we created 12 cases for
arbitrary placement with at least 100 demonstrated grasps
per case, totaling to 11320 demonstrated grasps before
data augmentation, and 35865 after data augmentation. Data
collection per object took about 90 minutes. The remaining
objects ((H)–(L)) were used to evaluate the performance of
GCN for unknown objects. Training of GCN was performed



TABLE I
RESULTS FOR OBJECT

GRASPING EXPERIMENT1

Object Success Rate [%]
(A) 70
(B) 50
(C) 60
(D) 40
(E) 20
(F) 40
(G) 60

1 Each object has been trialed 10
times.

TABLE II
RESULTS FOR UNKNOWN

OBJECT GRASPING

EXPERIMENT1

Object Success Rate[%]
(H) 60
(I) 20
(J) 20
(K) 40
(L) 30

1 Each object has been trialed 10
times.

on a remote server equipped with an Nvidia GeForce GTX
Titan X (Maxwell) and took 130 minutes for 2300 epochs,
while testing was conducted on a local PC with an Nvidia
GeForce GTX 970.

One single inference of GCN on our testing machine took
about 0.188 sec. After performing inference on GCN for an
object, we select the location with the highest score from
PLM followed by the configuration with the highest score
for that location in PCM. Additionally, we filter out configu-
rations that causes the robot to collide with its surroundings.

To perform a grasp, we have written a program on the
teach pendant which moves the robot from a set home
position to an approach position that is 10 cm away from the
grasp position proposed by GCN. This is then followed by
the grasp motion itself where the hand is actuated to squeeze
the object. We consider a grasp to be successful if the target
item is still pinched between the fingers of our gripper when
the robot returned to its home position afterwards.

B. Results

Example outputs of GCN is shown in Figure 4, displaying
the ability of GCN to propose different grasp configurations
for the same (X,Y) location for multiple items.

Results of our experiments for both grasping known and
unknown objects are listed in Table I and Table II. The low
success rate of object (E) can be explained by the camera
not being able to capture the differences in depth due to its
complex shape.

V. FUTURE WORK

Despite the results of our experiments, our data set used
to train GCN does not reflect real world settings in e.g.
warehouse logistics. Therefore, we plan to not only extend
our data set with more items, but also add cases in which
an object is arbitrary placed in cluttered environments. Fur-
thermore, since GCN has shown potential to learn more
complex grasp configurations such as pinching, we would
like to extend our method using higher DOF end-effectors.
Other functionalities that can improve the performance and
robustness of GCN, thus requiring consideration includes
using data from point clouds instead of only a depth channel,
and obtaining multiple views of the grasping scene.

VI. CONCLUSION

In this paper, we proposed a fully convolutional network
model, called the grasp configuration network (GCN) that
is able to output 6D grasp configurations when given an
RGB-D image as input. Furthermore, we introduced a data
collection method for use with GCN that leverages on
demonstrations of the grasps rather than on-image annota-
tions to enable training on high-dimensional annotated data.
Through the use of GCN, a classification-based model, we
demonstrated robotic grasps on arbitrary placed objects with
different rigidness and shapes.

REFERENCES

[1] N. Hudson, et al., “End-to-end dexterous manipulation with deliberate
interactive estimation,” in Proc. IEEE ICRA, May 2012.

[2] M. Zhu, et al., “Single image 3D object detection and pose estimation
for grasping,” in Proc. IEEE ICRA, 2014.

[3] A. Herzog, et al., “Learning of grasp selection based on shape-
templates,” Autonomous Robots, vol. 36, no. 1-2, 2014.

[4] Y. Domae, et al., “Fast graspability evaluation on single depth maps
for bin picking with general grippers,” in Proc. IEEE ICRA, 2014.

[5] U. Klank, et al., “Real-time cad model matching for mobile manipu-
lation and grasping,” in Proc. IEEE Humanoids, 2009.

[6] J. Bohg, et al., “Data-driven grasp synthesis - a survey,” IEEE
Transactions on Robotics, vol. 30, no. 2, Apr. 2014.

[7] W. Li, et al., “Recent advances on application of deep learning for
recovering object pose,” in Proc. IEEE ROBIO, Dec 2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[9] J. Long, et al., “Fully convolutional networks for semantic segmenta-
tion,” in Proc. IEEE CVPR, 2015.

[10] P. Pinheiro, et al., “Learning to segment object candidates,” in Proc.
NIPS, 2015.

[11] A. Nguyen, et al., “Detecting object affordances with convolutional
neural networks,” in Proc. IEEE IROS, Oct 2016.

[12] I. Lenz, et al., “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research (IJRR), vol. 34, no. 4-5,
2015.

[13] R. Araki, et al., “Graspabilityを導入したDCNNによる物体把持位
置検出 (Introducing Graspability for Object Grasp Position Detection
by DCNN),” in The Robotic Society of Japan, 2016.

[14] D. Guo, et al., “Deep vision networks for real-time robotic grasp de-
tection,” International Journal of Advanced Robotic Systems (IJARS),
vol. 14, no. 1, 2017.

[15] S. Ren, et al., “Faster R-CNN: Towards real-time object detection with
region proposal networks,” in Proc. NIPS, 2015.

[16] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE ICRA, 2016.

[17] S. Levine, et al., Learning Hand-Eye Coordination for Robotic
Grasping with Large-Scale Data Collection. Springer International
Publishing, 2017.

[18] A. Gupta, et al., “Learning dexterous manipulation for a soft robotic
hand from human demonstration,” in Proc. IEEE IROS, 2016.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” Proc. ICML,
2015.

[20] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. ICML, 2010.

[21] A. van den Oord, et al., “Pixel recurrent neural networks,” in Proc.
ICML, 2016.

[22] N. Silberman, et al., “Indoor segmentation and support inference from
rgbd images,” in Proc. ECCV, 2012.


