
End-to-End Learning of Object Grasp Poses
in the Amazon Robotics Challenge

Eiichi Matsumoto∗, Masaki Saito∗, Ayaka Kume and Jethro Tan

Abstract— The Amazon Robotics Challenge (ARC) is a
robotics competition aimed to advance warehouse automation.
One of the engineering challenges is making the system robust
to and being able to handle a wide variety of objects, as would
be the case in a real warehouse. In this paper, we shortly
describe our system used in ARC featuring a method to obtain
object grasp poses containing the location of the object as well
as orientation for the grasp by using a convolutional neural
network with an RGB-D image as input. Through our entry
in ARC 2016, we show the effectiveness of our method and
the robustness of our network model to a large variety of
object types in dense and unstructured environments wherein
occlusions are possible.

I. INTRODUCTION

The Amazon Robotics Challenge1 (ARC)—formerly
known as Amazon Picking Challenge, is an annual challenge
issued by Amazon that is increasingly difficult. In this
challenge, teams from both academia and the industry can
enter to create the ultimate robotic system to solve what
is considered by Amazon the final engineering challenges
found in warehouse automation. Many decisions have to be
taken on what approach to take for each subproblem when
building such a robotic system for this task, which involves
trade offs and compromises given the limited amount of
time and the resources each team has after receiving the
detailed task specification. The ‘pick task’ finals this year
was thrilling as its winner was chosen by watching replays
of their runs for the fastest cycle time after a tied best score
between Team Delft and our team (Team PFN).

In this article, we briefly present our robotic system used
in ARC 2016 that ended up placing second on the ‘pick
task’ and fourth on the ‘stow task’. In particular, we would
like to highlight our vision subsystem, which includes the
main contribution of this paper: end-to-end learning of object
grasp poses. We leverage convolutional neural networks
(CNN) to not only provide semantic segmentations for each
object, but also predict object grasp poses. This allows us to
avoid the use of computationally intensive 6D object pose
estimation by e.g. point cloud registration and speed up the
development process of our system.

∗Contributed equally in this work.
Preferred Networks Inc., Tokyo, Japan, {matsumoto, msaito,

kume, jettan}@preferred.jp
The authors would like to thank Tobias Pfeiffer, Taizan Yonetsuji, Ya-

sunori Kamiya, Ryosuke Okuta, Keigo Kawaai, Daisuke Okanohara for their
contribution and work done in the Amazon Robotics Challenge as part of
Team PFN, and FANUC Corporation of Japan for providing the robotic
arms and technical support.

1https://www.amazonrobotics.com/#/roboticschallenge

More information, source code used to run our system
including scripts to train the vision subsystem as well as
detailed models and images of the objects present in ARC
2016 can be found via [1].

II. RELATED WORK

A. Amazon Robotics Challenge

In ARC, team entries are evaluated which includes ap-
proaches to object grasping in an unstructured environment.
The latest ARC victors Team Delft [2] made use of a
region-based convolutional neural network (CNN) to provide
bounding box proposals for each object before executing a
global point cloud registration algorithm to estimate the 6D
pose of the objects. Based on this pose estimation, grasp
strategies are determined in combination with handcrafted
heuristics. Zeng et al. [3] developed a self-supervised deep
learning system used in Team MIT-Princeton’s entry that
takes advantage of multi-view RGB-D data of the objects to
obtain an initial pose for the iterative closest point algorithm.
In [4], Schwarz et al. presents evaluation of Team NimbRo’s
system during ARC 2016, which incorporates a perception
system that makes use of CNN for both object detection
and segmentation. For an overview of ARC 2015, we refer
to [5] in which Correl et al. collected lessons learned from all
team entries during that year, and to [6] wherein Eppner et
al. described Team RBO’s winning entry.

B. Object Grasp Pose Synthesis

A deep neural network model with two stages to predict
and score grasp configurations is proposed in [7]. [8] im-
proves this work by doing this in an end-to-end manner,
while Nguyen et al. uses a semantic segmentation based
model to output object affordances in [9]. However, these
methods are only tested in simple environments where ob-
jects are neither occluded nor occluding each other. On the
other hand, self supervising methods which for picking in
unstructured environments have been proposed in [10], [11].
The biggest disadvantage of these methods is the training
time they need.

III. SYSTEM OVERVIEW

A. System Setup

Our system2, shown in Figure 1, consists of two stationary
FANUC M-10 iA industrial robot arms, which were each
equipped with different end-effectors to handle different
objects. Like the previous winner of ARC, we observed that

2A video showing our system in action is accessible via goo.gl/ZavxX1



Fig. 1. Team PFN’s robotic system entry in the Amazon Robotics Challenge
2016. The right arm had a pinch-gripper, while the left arm was equipped
with a vacuum gripper, of which the tip can be actuated to rotate to an angle
of 0, 45, or 90 degrees. Both grippers had a length of 60 cm with 40 cm
reach and were equipped with an Intel Realsense SR300 RGB-D camera, a
Nippon Signal FX-8 3D laser scanner, and a VL6180X proximity sensor.

a vacuum gripper was capable of handling the majority of the
items. Therefore, we equipped the left arm with a vacuum
gripper connected to a commercially available off-the-shelf
Hitachi CV-G1200 vacuum cleaner allowing us to handle 37
out of 39 object types. However, an additional grasp method
was needed due the mesh texture of the pencil cup and the
weight of the dumbbell. Hence, we deployed our second arm
with a pinch-gripper to deal with these items and achieved
full type coverage on all the objects with our system.

To control our system and process data, we used a laptop
equipped with an Nvidia GeForce GTX 870M GPU and
an Intel i7 6700HQ CPU running Ubuntu 14.04 with ROS
Indigo. Additionally, two PCs running Microsoft Windows
were used to interface the system to the Intel Realsense
cameras and the Nippon Signal FX-8 laser scanners on
each end-effector. Furthermore, four Arduino Uno boards
connected to the VL6180X proximity sensors, a Bosch
BME 280 environmental sensor, and the valves and the relay
controlling the vacuum were also present in out system.
The proximity sensors, which provided redundancy to the
cameras and the laser scanners, were used to perform cal-
ibration at the very beginning of both the picking and the
stowing tasks to calculate the offset and orientation of the
shelf relative to the system.

B. Process Flow

To process tasks in our system, we use the ‘sense-plan-
act’ paradigm in combination with a global task planner,
which puts the system into a certain state. For motions, we
have defined joint space positions for the robots to capture
the scene of the tote and the bins. Free space motions from
and to these positions, as well as Cartesian space motions
are commanded from the laptop to the robot controllers,
which are responsible for the motion planning, generation,
and execution. Because of the many heuristics present in our
system, we will not describe them in this paper and refer to

our source code [1].
Depending on the current state of the system and the

given task, i.e., pick or stow, our task planner decides a
next target using object-specific heuristics, such as size or
weight. Afterwards, the robot moves in front of the location
containing the target item to capture images of the scene
from multiple directions. These images are then forwarded
to our CNN—described in Section IV, which in turn provides
segmentations for all detected objects and a map with ranked
grasp candidates (object type, grasp pose, surface normal,
prediction score) in the scene for all images in the local (i.e.
the bin or tote with the target item) coordinate system. Grasp
candidates are filtered out from this map if either (1) the
prediction score is below a threshold, (2) the surface normals
of its surrounding pixels are not consistent, or (3) the robot
position is not safe because of predicted collision with the
shelf or tote. Based on these candidates, our task planner
then decides to either (a) pick the target item, (b) request
coordinates for a grasp candidate of an item occluding the
target item to move the occluding item to another location,
or (c) completely give up on picking objects from the
current location. To detect whether a grasp of an object
has succeeded, we utilize the environment sensor described
in Section III-A to measure the pressure of the vacuum. If
failure is detected, we retry the grasp up to four times using
slightly different positions and orientations. An exception
to this process is when the pencil cup or the dumbbell is
selected as target item, for which their grasp positions are
determined using the iterative closest point algorithm found
in PCL (Point Cloud Library).

IV. VISION SUBSYSTEM

The problem definition in ARC is noteworthy in how
objects were known beforehand. This not only allowed
exploitation of object-specific heuristics, but also simplified
the object recognition subproblem.

A. Model Overview

Figure 2 shows the architecture of the neural network
used in our vision subsystem. In this network, the input is
a four-channel RGB-D image with resolution of 320 × 240
pixels, while the output consists of two results, one for the
semantic segmentation indicating 40 object classes (39 items
and the background), and one for a confidence map with
grasp poses in the coordinate system of the robots. Although
our network was inspired by an existing fully convolutional
encoder–decoder network [12] that consists of a “encoder”
network with convolutional layers and a “decoder” network
with deconvolutional layers, several settings are different.
Specifically, we did not use any max pooling and unpooling
layers, but instead employed convolutional and deconvolu-
tional layers with stride 2 and kernel size 4. All layers in
the encoder have ReLU activation, while all layers in the
decoder have Leaky ReLU as activation. As with the original
encoder–decoder network, we apply the batch normalization
layers after the convolutional layers.



input
ENCODER

3,1,64

Conv1

4,2,64
3,1,64

Conv2

4,2,64
3,1,64

Conv3

4,2,64
3,1,64

Conv4

4,2,64
3,1,128

Conv5

3,1,256

Latent

DECODER

1,1,256

4,2,128
3,1,128

4,2,64
3,1,64

4,2,64
3,1,64

4,2,64
3,1,64

classes
3,1,40

Deconv1
Deconv2

Deconv3
Deconv4

Deconv5

grasps
3,1,2

Fig. 2. Layer architecture of our CNN. The output of the encoder is connected to two identical decoders for outputting the semantic segmentation and
graspability respectively. The parameters in the convolutional and the deconvolutional layers are denoted as (kernel size), (stride), (output channels).

(a) (b)

Fig. 3. Example of images in dataset used for training. (a) CG image with
Blender models of items, and (b) image of an actual scene with real items.

B. Data Collection

Using the robot arm, we have collected about 1,500
images of all the bins and tote containing up to 12 items
in a cluttered condition to simulate the competition scene.
Although this number is relatively smaller than used in
literature about CNN in general image recognition tasks,
we found the output of the trained model to be workable
for performing semantic segmentation on known objects.
Moreover, we manually annotated the ground truth, i.e., per-
object semantic segmentations and grasp positions ourselves
with an in-house developed annotation tool to equalize the
quality of annotation. Data collection and annotation took
about two weeks in total.

C. Pre-training by CG images

In order to improve the accuracy, we first pre-trained our
model with an artificially generated CG dataset containing
100,000 images representing scenes from the tote. For the
items in these images, we created 39 textured models with
Blender, which allowed us to obtain the annotation of each
CG scene. Despite of these images being generated, we found
that the quality of these images are comparable to images
taken from the actual scene with real items, see Figure 3.
However, we empirically observed that the accuracy increase
of the model is negligible, and therefore conclude that the
performance gained by pre-training on CG images is not
worth its effort. We conjecture that this is caused by the

discrepancy of information in the depth channel between the
CG images and images acquired from sensors in our system.
We note that further analysis and experiments should be done
to confirm this discrepancy and alleviate it by e.g. adding
noise to the depth channel of the CG images.

D. Training

For training, we initialized the weights in the encoder
with HeNormal [13] and the decoder with zero centered
normal distribution with σ2 − 0.02. As optimizer, we used
Adam with learning rate α = 0.001. As loss function, we
employed the sum of the two loss functions defined by L =
Lcls + Lpos, where Lcls denotes the softmax cross entropy
loss representing the object class for each pixel, and Lpos

denotes the binary cross entropy loss representing the grasp
pose. During training, we observed that segmentation by the
model trained with the default softmax cross entropy loss
tends to ignore small objects such as the scissors. Therefore,
we balanced the weight by multiplying it proportional to
the reciprocal of the area: Lcls = N

C

∑
A−1

i Li
cls, where N

indicates the total number of pixels in the dataset, C the
number of classes, Ai the number of pixels registered to
class i in the dataset, and Li

cls the softmax cross entropy
loss for the class i.

Because of the inconsistency in image resolutions in our
dataset, we resized all images to 320 × 240 pixels before
performing random cropping to 224×224 pixels for training.
The entire training process took two days on an Nvidia
Titan X (Maxwell) GPU.

E. Inference

Similar to the training process, we resize retrieved RGB-
D images to 320 × 240 pixels when inferring our network.
Moreover, because the objects types in all locations are
known, channels for object types that are not in a specific
location are ignored.

V. RESULTS

In preparation for ARC, we have evaluated the effect of
the weight balancing described in Section IV-D as well as
using the depth channel in our network model. Results of



small items large items
0.60

0.65

0.70

0.75

0.80

F-
sc

o
re

RGB+D model
RGB model
no balancing

Fig. 4. Evaluation of semantic segmentation for variants of our model.
The ‘RGB model’ was trained without depth channel information, while
the ‘no balancing model’ did not use weight balancing for the object area
size. Small items and large items are categorized according to an object’s
volume being lower or higher than 400 cm3. F-scores are evaluated with a
test dataset containing over 100 images in total.

(a)

(b)

Fig. 5. Example of outputs produced by our network model containing
(from left to right): (i) a color image with the selected grasp, (ii) depth
image with all available grasp candidates, and (iii) semantic segmentation
of objects in the scene.

our experiments can be found Figure 4. We observe that
using depth information in addition to the RGB channels
significantly improved the overall estimation accuracy of our
model. Furthermore, our final model trained with weight
balancing enabled outperformed our trained model without
balancing in usefulness during the competition, because it
contributed towards more reliable semantic segmentation for
the small objects in ARC, albeit lowering the F-score for the
large objects. The results of our final trained model are shown
in Figure 5, demonstrating accurate semantic segmentation
of objects in dense, unstructured scenes. We notice that
the grasp candidates are scored with consideration to the
manipulation complexity of objects. For example, although
the plastic coffee jar is correctly detected in the semantic
segmentation results of Figure 5, no grasp candidates are
proposed for this item in the grasp candidates map. Taking
200 milliseconds to output these results, our vision subsystem
was able to give us competitive advantage in data processing
compared to the top scoring teams, as shown in Table I.

TABLE I
COMPARISON OF OBJECT GRASP POSE GENERATION TIMES

Team Delft1 NimbRo Picking2 MIT-Princeton PFN
Time (sec.) 5 – 40 0.9 – 3.3 10 – 15 0.2
1 Derived from [2] and analyzing the video linked in [2].
2 Time is excluding ICP for 6D pose estimation.

VI. FUTURE WORK

With the lessons learned during the competition, we note
that many improvements can still be made to our system in
order for it to be applicable in a real warehouse. In order
to use our vision subsystem to its full extent, we have spent
about two weeks to collect and annotate data. By applying
techniques such as semi-supervised or weakly supervised
learning, we can improve the scalability of our system to
more object types as well as its robustness to unknown
items. Furthermore, while our model was able to predict
grasp poses for our vacuum gripper, we argue that a new
method is needed for data collection and training in order for
it to become applicable to more complex (e.g. higher DOF)
end-effectors. Other functionalities requiring consideration
include addition of visuomotor capabilities to the system in
order to deal with complex object manipulation.

VII. CONCLUSION

In this paper, we briefly described our system entry to
ARC 2016 and proposed a vision subsystem using CNN
to enable end-to-end learning to predict object grasp poses
from RGB-D images. Thanks to the generalization abilities
of deep learning models, our trained model was able to
successfully produce semantic segmentation of objects in
unstructured environments where items can be occluded,
while also outputting grasp poses for these objects within
200 ms. The effectiveness of our method was demonstrated
in the competition, where our entry placed among the top
scoring teams.

REFERENCES

[1] (2016) Source code of Team PFN’s entry in ARC 2016. [Online].
Available: https://github.com/amazon-picking-challenge/team pfn

[2] C. Hernandez, et al., “Team Delft’s Robot Winner of the
Amazon Picking Challenge 2016,” 2016. [Online]. Available:
https://arxiv.org/abs/1610.05514

[3] A. Zeng, et al., “Multi-view Self-supervised Deep Learning for 6D
Pose Estimation in the Amazon Picking Challenge,” in Proc. IEEE
ICRA, 2017.

[4] M. Schwarz, et al., “NimbRo Picking: Versatile Part Handling for
Warehouse Automation,” in Proc. IEEE ICRA, 2017.

[5] N. Correll, et al., “Lessons from the Amazon Picking Challenge,”
2016. [Online]. Available: http://arxiv.org/abs/1601.05484

[6] C. Eppner, et al., “Lessons from the Amazon Picking Challenge: Four
Aspects of Building Robotic Systems,” in Proc. Robotics: Science and
Systems, 2016.

[7] I. Lenz, et al., “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research (IJRR), vol. 34, no. 4-5,
pp. 705–724, 2015.

[8] D. Guo, et al., “Deep Vision Networks for Real-time Robotic
Grasp Detection,” International Journal of Advanced Robotic Systems,
vol. 14, no. 1, 2016.

[9] A. Nguyen, et al., “Detecting object affordances with convolutional
neural networks,” in Proc. IEEE IROS, Oct 2016.

[10] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE ICRA, 2016.

[11] S. Levine, et al., “Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection,” arXiv preprint
arXiv:1603.02199, 2016.

[12] J. Yang, et al., “Object Contour Detection with a Fully Convolutional
Encoder-Decoder Network,” 2016. [Online]. Available: https://arxiv.
org/abs/1603.04530

[13] K. He, et al., “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification,” 2015. [Online]. Available:
http://arxiv.org/abs/1502.01852


