Blog

2018.06.01

Engineering

オープンソースの深層学習フレームワーク Chainer アマゾン ウェブ サービスが公式にサポート

Tag

Shingo Omura

Engineer

深層学習フレームワークの Chainer は、アマゾン ウェブ サービス(AWS) の協力により、多数の AWS アプリケーションで利用できるようになりました。Chainerは、ニューラルネットワークを簡単に扱える Pythonのフレームワークですが、AWSと組み合わせる事で、マルチ GPU やマルチサーバーにおける Chainer の並外れたスケーリング能力を最大限活用できます。Chainer の非常に優れたスケーリング能力については、ImageNet-1K を利用した ResNet50 の学習を、それまで最速とされた Facebook の記録より4倍速い15分で完了した事により実証済みです。

Chainer のマルチ GPU とマルチサーバーのスケーリングにより、必要時に必要量の計算資源を提供するというクラウドの利点を有効活用できます。Chainer の比類なき並列計算能力と AWS のオンデマンド型クラウド資源を併用すれば、費用を最小限に抑えながら、ハードウェアの制約がある環境下と比べて、非常に短時間で複雑な深層学習モデルの学習が可能になります。

Chainer は、AWS 深層学習 AMI(AMI)ですでに利用可能となっていますが、Chainerが最新の CloudFormation スクリプトをリリースした事により、一度に複数のChainer AMIを容易にデプロイできるようになりました。また、ChainerはAWS上で32 GPUまでのスケーリング効率95%を達成する事を確認済みで、これはニューラルネットワークの学習を最大30倍高速化できる事を意味します。

データの前処理やハイパーパラメータの調整、ならびにニューラルネットワークのデプロイといった作業の簡素化を目的として、Chainer は Amazon SageMaker でもサポートされるようになりました。Amazon SageMaker は、開発者やデータサイエンティストが、機械学習モデルをあらゆる規模で、迅速かつ簡単に構築、トレーニング、デプロイできるようにする完全マネージド型プラットフォームです。SageMaker で Chainer を使用すれば、SageMaker が持つデプロイ上の利点に加え、並列化により速度が向上します。

上記に加えて、Chainer は AWS Greengrass でもサポートされるようになりました。AWS Greengrass は、接続されたデバイスでローカルのコンピューティング、メッセージング、データキャッシュ、同期、ML 推論機能を安全な方法で実行できるようにするソフトウェアです。Amazon SageMaker と組み合わせる事で、SageMaker でのモデル学習時や、AWS Greengrass でIoTデバイスへ直接デプロイする際に、Chainer の利便性とスピードを活用できます。

Chainer チームは AWS による今回のリリースを大変うれしく思うと同時に、進化し続ける深層学習技術のさらなる発展に貢献する事を目指します。

Tag

  • Twitter
  • Facebook